

INTERNATIONAL MATHEMATICS TOURNAMENT OF TOWNS

SENIOR PAPER: YEARS 11,12

Tournament 42, Northern Spring 2021 (O Level)

(C)2021 Australian Mathematics Trust

Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. (a) A convex pentagon is partitioned into three triangles by non-intersecting diagonals. Is it possible for centroids of these triangles to lie on a common straight line?
(b) The same question for a non-convex pentagon.
2. (a) Maria has a balance scale that can indicate which of its pans is heavier or whether they have equal weight. She also has 4 weights that look the same but have masses of $1000,1002,1004$ and 1005 grams. Can Maria determine the mass of each weight in 4 weighings? The weights for a new weighing may be picked when the results of the previous ones are known.
(2 points)
(b) The same question when the left pan of the scale is lighter by 1 gram than the right one, so the scale indicates equality when the mass on the left pan is heavier by 1 gram than the mass on the right pan.
(2 points)
3. For which n is it possible that a product of n consecutive positive integers is equal to a sum of n consecutive (not necessarily the same) positive integers? (5 points)
4. It is well-known that a quadratic equation has no more than 2 roots. Is it possible for the equation $\left\lfloor x^{2}\right\rfloor+p x+q=0$ with $p \neq 0$ to have more than 100 roots? (By $\left\lfloor x^{2}\right\rfloor$ we denote the largest integer not greater than x^{2}.)
(5 points)
5. Let O be the circumcentre of an acute triangle $A B C$. Let M be the midpoint of $A C$. The straight line $B O$ intersects the altitudes $A A_{1}$ and $C C_{1}$ of the triangle $A B C$ at the points H_{a} and H_{c} respectively. The circumcircles of the triangles $B H_{a} A$ and $B H_{c} C$ have a second point of intersection K. Prove that K lies on the straight line $B M$.
(6 points)
